Topology

Semestral Examination

Instructions: All questions carry ten marks.

- 1. Define Hausdorff space. Let X be a topological space and $A \subset X$ be a subspace. Let $f : A \to Z$ be a continuous map into a Hausdorff space Z. Show that there is at most one extension of f to a continuous function $g : \overline{A} \to Z$.
- 2. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at exactly one point of \mathbb{R} . Justify your answer.
- 3. A map $f: X \to Y$ is called *locally constant* if each point x of X has an open neighbourhood such that the restriction of f to that neighbourhoos is a constant map.
 - (a) Show that any locally constant map is continuous.
 - (b) Prove that a locally constant map on a connected set is a constant map.
- 4. Define compact space. Prove that any compact subset of a Haudorff space is closed.
- 5. Define regular space and normal space. Show that any regular second countable space is normal.
- 6. Show that every locally compact Hausdorff space is regular.